
(Protected by U.S. pending patents)

Product Description

The etMEMS ${ }^{\top M} 1 \times 2$ Square Column Fiberoptic switch connects optical channels by redirecting incoming optical signals into selected output fibers. This is achieved using a proprietary etMEMS ${ }^{\top M}$ configuration and activated via an electrical control signal. It uniquely features rugged thermal activated micro-mirror, moving-in and -out optical paths instead of rotating mirror. This novel design significantly simplify the control electronics, offering unprecedented high stability, ultra compact dimension and an unmatched low cost .

Performance Specifications

Features

- High Reliability
- Intrinsic tolerance to ESD

Applications

- Channel Routing
- Configurable Add/Drop
- System Monitoring
- Instrumentation

Revision: 08-20-15

etMEMS ${ }^{\text {TM }} 1 \mathrm{X1,1} \mathrm{\times 2}$ SC Switch	Min	Typical	Max	Unit
Operating Wavelength	Single Band	1260~13	510~1610	nm
	Dual Band	1260~1360	1510~1610	
	Broad Band	1260~1610		
Insertion Loss ${ }^{[1]}$		0.5	1.0	dB
Wavelength Dependent Loss		0.15	$0.3{ }^{[2]}$	dB
Polarization Dependent Loss			0.1	dB
Return Loss ${ }^{[1]}$	50			dB
Cross Talk ${ }^{[1]}$	50			dB
Switching Time		10		ms
Repeatability			± 0.05	dB
Repetition Rate			20	Hz
Durability	10^{9}			Cycles
Switching Type		n-Latchin		
Operating Temperature	-5		70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40		85	${ }^{\circ} \mathrm{C}$
Optical Power Handling		300	500	mW
Fiber Type		SFM-28		
Notes: [1]. Excluding Connectors. [2]. Dual band and Broad band. [3].Please contact us for other	ngle mode fiber			

etMEMS ${ }^{\text {TM }} 1 \times 1,1 \times 2$ Square Column Fiberoptic Switch

Mechanical Dimensions (Unit: mm)

Pin 3

Electrical Driving Requirements

Optical Path					
1×1 (Normally Transparent)	1×1 (Normally Dark)	1×2	Pin 1	Pin 2	Pin 3
	Port $1 \leftrightarrow 2$		NC ${ }^{[1]}$	GND	H
Port $1 \leftrightarrow 2$	Dark	Port $1 \leftrightarrow 3$			

[1]. NC: No electronic connection.

Driving Voltage	Min	Typical	Max	Unit
H	4.0	4.5	5.0	V
L			0.8	V
Power Consumption		170		mW

Functional Diagram

etMEMS ${ }^{\top M} 1 \times 1,1 \times 2$ Square Column Fiberoptic Switch

Ordering Information

MESC ${ }^{[1]}$.	$\square \square$	\square	2	\square			\square	\square
	Type	Wavelength	Switch	Package	Fiber Type		Fiber Length	Connector
	$\begin{aligned} & 1 \times 1 \mathrm{~N} / \mathrm{T}^{[2]}=1 \mathrm{~T} \\ & 1 \times 1 \mathrm{~N} / \mathrm{D}^{[3]}=1 \mathrm{D} \\ & 1 \times 2=12 \\ & \text { Special }=00 \end{aligned}$	$1060=1$ $\mathrm{C}+\mathrm{L}=2$ $1310=3$ $1550=5$ 1310 \& $1550=9$ $1260 \sim 1620=B$ Special $=0$	Non-latching=2	Standard=1 Special=0	$\begin{aligned} & \text { SMF-28=1 } \\ & \text { Special=0 } \end{aligned}$	Bare fiber=1 $900 \mu \mathrm{~m}$ tube $=3$ Special=0	$\begin{aligned} & 0.25 \mathrm{~m}=1 \\ & 0.5 \mathrm{~m}=2 \\ & 1.0=3 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & \text { None }=1 \\ & \text { FC/PC }=2 \\ & \text { FC/APC }=3 \\ & \text { SC/PC }=4 \\ & \text { SC/APC }=5 \\ & \text { ST/PC }=6 \\ & \text { LC }=7 \\ & \text { Duplex LC= } 8 \\ & \text { Special }=0 \end{aligned}$

[1]. MESC: MEMS Square Column Switch.
[2]. N/T: Normally Transparent 1x1 Non-Latching Switch
[3]. N/D: Normally Dark 1x1 Non-Latching Switch.

Recommend MEMS Non-Latching Switch Driver

